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ABSTRACT 

Particles with masses more than a few MeV, decaying into photons or 

electrons, can cause destruction by photofission of cosmologically 

produced light elements. A previous calculation of this effect is 

corrected and extended, and used to derive maximum lifetimes for massive 

neutrinos; these range from a few thousand seconds upwards, depending on 

the particle mass. jome approximate expressions are given enabling 

lifetime limits to be obtained for other particles, with different 

masses and abundances, such as gravitinos. These limits are generally 

stronger than previously determined constraints, such as the distortion 

of the microwave background by energetic photons. 
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I. INTRODUCTION 

In recent years standard big bang cosmology has become a routine 

proving ground for innovations in high energy particle physics. New 

types of particle or- interaction which may be difficult or impossible to 

investigate by direct experiment often have significant consequences for 

the evolution of the Universe. An example of this procedure is in its 

application to the case of hypothetical massive neutrinos. Simply by 

calculating the abundance of such particles relative to photons, it was 

concluded that neutrinos between about 1OOeV and l&V in mass must be 

unstable, otherwise they would dominate the present mass density of the 

Universe by an intolerable amount (Dicus, et al. 1978). But if 

neutrinos are unstable, they will produce other particles (photons, 

electrons, neutrinos etc.) on decaying, and consideration of the 

effects of the decay products leads to other constraints on the lifetime 

of the neutrinos. In a previous paper (Lindley 1979) it was shown that, 

if neutrinos produce photons of high enough energy as they decay, a 

strong limit on the lifetime comes from requiring that these photons 

should not destroy deuterium by photofission reactions. The same idea 

has been used to limit the abundance of evaporating primordial black 

holes (Lindley 19801, and has been mentioned as a constraint on the 

properties of super-symmetric particles (Kim, et al. 1984). 

Unfortunately, the original calculations &iven by Lindley (1979) were 

both inaccurate and partly in error. It is the purpose of this paper to 

correct those errors and omissions, and to derive more accurate 

constraints on the lifetimes of massive neutrinos, or- particles such as 
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gravitinos. In addition, we consider decays which produce 

electron-positron pairs, as well as direct radiative decays. 

The essence of the following calculations can be explained 

concisely. A photon with energy above threshold for photofission of a 

particular nucleus has a small chance of destroying that nucleus; the 

probability is just the ratio of the rate for photoreaction to the total 

scattering rate. A single energetic photon from particle decay produces 

a cascade of lower energy photons as thermalisation proceeds, and by 

adding all the above probabilities for the photons in the cascade, we 

find the mean number of nuclei destroyed by a single initial photon. If 

we then know the abundance of the decaying particle, and therefore the 

abundance of energetic photons, we can estimate the total number of 

nuclei destroyed. A point to note, which will be important in what 

follows, is that the destruction probability per photon is inversely 

proportional to the total photon scattering rate; therefore, the faster 

photon thermalisation, the slower element destruction. In the next 

section we discuss the details of photon and electron thermalisation, 

then estimate the ‘destruction efficiency’ of photons as a function of 

energy. Finally, these estimates are used to put constraints on 

particle lifetimes. 

This paper deals only with the destruction of light elements by 

photoreactions. There is also the interesting possibility that for some 

combination of particle mass and lifetime a small fraction of helium II 

can be destroyed to produce helium 3 and deuterium, without the latter 

being themselves destroyed. This question is dealt with elsewhere 

(Audouze, et al. 1984). 
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II. THRESHOLDS 

Photons of modest energy (around lOOMeli) can lose energy by three 

principal means; Compton scattering off thermal electrons, pair- 

production off nuclei, and pair-production off thermal photons. It was 

the omission of the third process which was the major error made by 

Lindley (1979). For higher photon energies, more exotic channels open 

(such as muon pair-production or hadronic showers) which we will not 

attempt to discuss. Double photon pair-production has a cross-section 

which differs from the Klein-Nishina cross-section only by phase-space 

factors (Jauch and Rohrlich i976), and a threshold given by (Ew)“*=mec2 

(where E and w denote the energies of the decay and thermal photon 

respectively). Its significance is that when this process is above 

threshold, energetic photons thermalise extremely rapidly because 

thermal photons are much more numerous than electrons and nuclei. 

Whether or not double photon scattering is important for photons of 

energy E >> kT depends on the temperature; as the Universe cools, fewer 

and fewer photons in the thermal Planck distribution are sufficiently 

energetic to exceed the threshold requirement. The critical temperature 

when double photon scattering becomes unimportant compared to Compton 

Scattering can be estimated by finding the point when the number of 

thermal photons above threshold is equal to the total number of thermal 

electrons, the cross-sections being comparable. The double photo” 

cross-section has a peak value, of order the Thomson cross-section, when 

(Ew)“* = 1.4 m eC* (Jauch and Rohrlich 1976). The fraction of photons 

above energy w in a black body distribution falls to 10m9 when 

w/kT = 25. Therefore, at the point when 
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Ekt = w4m,c*)2 
25 

( 1’) 

double photon and Compton scattering are of roughly equal importance for 

an electron to photon ratio of 10“; we could have chosen 10 -8 or 10-10 

without altering the factor 25 very much. The critical temperature and 

photon energy are then related by 

g,kT* = l/50 MeV2 (2) 

Photons of energy E, are thermalised by electronic or nuclear scattering 

when the temperature is T, or below; equally, at this temperature, 

photons of energy g, or below are unaffected by double photon 

pair-production. 

The threshold for photodestruction of deuterium is QD = 2.225Mev, 

and we are obviously interested only in photon energies higher than 

this. From the foregoing, the critical temperature for photon energy 

2.225MeV is 9x10 -3MeV. We will adopt a simple temperature-time relation 

for the Universe of 

(kt/MeV)’ (t/set) = 1 (3) 

in which case the critical temperature occurs at time tD = 1.24~10~~. 

(We could obviously use a more accurate temperature-time relation than 

this by taking care to get the value of the right-hand side correct. 

However, we will show below that the lifetime limits obtained can be 

scaled easily to cosmologies in which the combination T*t has an 



arbitrary value. This means that the results of this paper can be 

adapted to certain kinds of non-standard cosmologies, for example with 

different numbers of particle species.) aefore tD’ all photons which 

are sufficiently energetic to cause photofission are very rapidly 

thermalised by double photon pair-production, which means that element 

destruction is effectively suppressed. Because helium 3 and helium 4 

have higher thresholds (5.5MeV and 19.8MeV respectively), they become 

vulnerable to photodestruction at later times t 3 = 7.6~10~~ and 

t4 = 9.9x105s. We will assume for the time being that photofission is 

completely negligible as long as double photon pair-production dominates 

thermalisation; this will be justified later. 

The thermalisation history of photons has now become more 

complicated than it was in Lindley (1979). To illustrate what happens 

as the Universe cools, let us consider the fate of 100MeV photons. 

Until tD, nothing happens. Just after tD, the decay photons are still 

well into the double photon regime, and therefore produce 

electron-positron pairs which lose energy by inverse Compton scattering. 

From a photon of energy wo, inverse Compton photons have a spectrum 

ranging up to a maximum energy (Jauch and Rohrlich 1976) 

w In -= If 6 
w 

0 
(1-6)+2wo/E (4) 

where 3 is the velocity of the electron, and E its energy. Come 

fraction of these inverse Compton secondary photons will be above QD but 

below E,, the double photon threshold, and will be capable of 

photodestroying deuterium. Later, helium 3 and then helium 4 will 
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become vulnerable to destruction in the same way. Not until 

kT = 2x10~‘IMeV, t = 2.5~10~~. will the decay photon itself fall below 

the double photon threshold, and begin to lose energy by Compton 

scattering or nuclear pair-production. At this point, the spectrum of 

secondary photons, and therefore the element destruction rates, will 

change. However, since the energetic photons come from decaying 

particles whose abundance is decreasing exponentially with time, the 

earlier effects will be the more important. Consequently, the largest 

contribution to element destruction is from the inverse Compton photons 

resulting from double photon pairs. 

Since the destructive effect of photons is alx;t entirely due to 

the secondary photons from electron-positron pairs, it iS COnVenient to 

estimate the destructive power of an electron of given energy. 

(Positrons do not annihilate significantly until they have lost energy 

and become non-relativistic, so we need not distinguish them from 

electrons.) AS we are dealing with very energetic electrons, with 

B = 1, equation (4) for the maximum scattered photon energy can be 

written 

w m = (,+~)2wo/~(l-82) + 2(1+8)wo/El 

^ 
= lZY‘kT/[l+l2YkT/m ec21 (5) 

where the electron energy is now E = Ymec2. We have also substituted 

w 0 = 3kT for the typical energy of a thermal photon. In the low 

temperature limit, the maximum scattered energy is 12Y*kT, and at high 



temperature, the maximum is E. Figure 1, which illustrates the double 

photon threshold and the maximum scattered photon energy as functions of 

temperature, will help to explain what happens as an electron of given 

energy thermalises at different cosmological epochs. As an example, 

consider an electron of 50MeV, and its effect on deuterium. After time 

t D, secondary photons between QD and E, can destroy deuterium. at a 

later time (t, on fig. l), the maximum secondary photon energy is equal 

to the double photon threshold energy, after which all scattered photons 

above QD can destrcy deuterium. Finally, at time t2, the maximum 

scattered photon energy falls below QD, and no element destruction can 

OCCUr. For any electron energy, there is consequently a limited range 

of times when photodestruction by inverse Compton scattered photons is 

effective. Moreover, 4He is destroyed for less time than 3He, and 3Hs 

for less time than D. It is also seen from fig. 1 that for each nucleus 

the electron energy must exceed some value (marked on the diagram), or 

else the maximum scattered energy will fall below the photodestruction 

threshold before the double photon threshold has risen above it, in 

which case no destruction occurs. 

In order to calculate (in the next section) the element destruction 

rates per electron, we would like to know the complete distribution in 

energy of all photons resulting from the thermalisation of a single 

electron. This is obviously a complicated thing to do; the first set of 

inverse Compton photons will themselves either pair-produce or Compton 

scatter, leading to more photons, and so on. Instead of this, we will 

simply estimate the distribution of the first set of inverse Compton 

photons, and use that to get destruction efficiencies. This should be a 
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reasonably accurate approach for the electrons whose energy is not much 

higher than the photodestruction thresholds, because photons scattered 

more than once will mostly be below these thresholds. Even calculating 

exactly the energy distribution of scattered photons for fixed electron 

and initial photon energy is algebraically intricate, so we will use a” 

approximation. For most of the area in fig. 1 below the double gamma 

threshold, the maximum scattered energy is approximately wm = ,2y*kT<<c, 

and for this asymptotic case the distribution of inverse ComptOn 

scattered photons is give” by Rybicki and Lightman (1979) as 

“(w,wm)dw = 2 z (1 - k) (6) 

This has been normalised to give a” integral over 0 < w < wm of unity, 

so that it can be interpreted as the probability density functi0” for’ 

the distribution of scattered photo” energy. We can use expression (6) 

for the photon energy distribution when double photon scattering is 

unimportant. However, we are also interested in the photon spectrum 

when the maximum photon energy is above the double gamma threshold in 

fig. 1. In this case, our assumption of a sharp transition in photon 

scattering behaviour at the threshold is obviously inaccurate, so there 

is little point in trying to make a better estimate of the inverse 

Compton photon spectrum. Therefore we will use equation (6) for the 

photo” distribution in all cases, but for consistency in the energetics 

w m will be give” for all electron energies and temperatures by equation 

(5). This is what we will now use to calculate the element destruction 

rates by electrons. 
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III. DESTRUCTION RATES 

The probability that a single photon causes photofission of a 

nucleus is the inverse ratio of the mean free path for photofission to 

the total mean free path. Let us first consider the case when double 

photon pair-production is unimportant, so that a photon either undergoes 

Compton scattering or pair-produces in the presence of a nucleus. <The 

mean free path for photoreaction is so large compared to these two that 

it can be ignored in calculating the total scattering rate.) The 

pair-production cross-section is proportional to the square of the 

nuclear charge, so we can write the total mean free path as 

$1 = “eoKN + (“, + ‘I”fje)Opp 

xhere oKN is the Klein-Nishina cross-section, and (I 
PP is the 

pair-production cross-section on a proton. This can be rewritten 

-1 
5 = ne(oKN + (1+4”He/“H) 

(l+zn~e/nR) 

(7) 

(8) 

The factor multiplying a 
PP 

is 817 for a helium abundance of 25% by mass, 

l/13 by number, so we will set it to unity for simplicity; this makes 

the scattering rate independent of He abundance. With this 

aPProximatio*, the probability Pi(w) that a photon of energy w destroys 

a nucleus of element i is therefore 

XT 
Pi(W) = “i = 

nioi 

“e (UKNfcr PP) 
(9) 
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where Oi is the appropriate photoreaction cross-section. An electron 

produces the inverse COmptOn photon SpeCtrum n(w,wm)dw derived above so 

defining the quantity 

w1 
zi(~.T) = J ‘i dw 

Qi (oKN+app) ’ n(w*wm) 
(10) 

the expectation value of the number of nuclei destroyed per electron is 

AN. 
--& = - 2 Zi(~,T) 

Ni 
(11) 

The dependence of Ii on E and T comes from the wm in the photon 

spectrum, and from the upper limit in the integral, which iS 

w1 = min(w,,E,). As explained in the previous section, only the inverse 

Compton photons below the double photon threshold are included in the 

calculation of destruction rates. The quantity Ni can be taken as the 

number of nuclei in a constant comoving volume, and this is clearly 

unchanging in the absence of photofission. If dNE is the number of high 

energy electrons released into the same volume over a certain time 

interval, we can write the destruction of nucleus i as 

dNi = -niLi(~,T) dNg/ne 

(12) 

= -NiZi(e,~) dnE/ne 
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where we have first replaced the ratio of densities ni/ne by the 

corresponding ratio of numbers in a fixed volume, and then replaced 

N /N g s by the corresponding ratio of densities. This gives us an 

expression for the rate of change of Ni which does not explicitly depend 

on cosmological epoch or expansion. We can notionally divide Ni by the 

total number of baryons in the comoving volume, which means it can be 

directly interpreted as the fractional number density of nucleus i; this 

is the most convenient physical quantity to deal with. The independent 

variable may be regarded as nE/n e, the ratio Of energetic electron 

density to thermal electron density. The equation for Ni is implicitly 

dependent on cosmological epoch through the temperature dependence of 

xi. For a given electron energy, the Ei are easily found numerically by 

integrating the inverse iompton photon spectra over the cross-section 

ratios. The photoreaction cross-sections are experimentally determined 

to good accuracy at these energies, and Table 1 gives a list of 

references for them. All reactions have been included, except 

4 He(Y,D)D; the cross-section for this is not so well-known, but it is 

less than 1% of the total cross-section for helium 4 (Arkatov et al 

1974). Figure 2 illustrates the values of the Zi for helium 4, 

helium 3, and deuterium, as a function of temperature for electron 

energy 100 MeV. Also illustrated are the quantities fij, which are the 

branching fractions for production of nucleus j from nucleus i; for 

instance, helium 3 produces deuterium in a fraction f 30 Of 

photoreactions, otherwise producing free nucleons only. (The fij are 

not used in this paper, but are important in the calculations of 

Audouze, et al. (1984)). The shapes of the curves for the Ei, and the 
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typical magnitudes, are much the same for different electron energies. 

When double photon pair-production dominates thermalisation, a 

similar calculation can be done. The difference is that the total 

photon scattering rate is controlled by the thermal photon density 

rather than the electron density. Consequently, we can resrrite equation 

(12) as 

dNi = -NICK dn& (13) 

where Zi is now calculated using the photon-photon pair-production 

zross-section instead of the o KN+~pp of equation (lo), and the 

independent variable is the ratio of energetic electron density to 

photon density. We expect that El will have the same order of magnitude 

as Xi. However, if the decay electrons come from gravitinos their total 

abundance is perhaps l/50 of the photon density, and in the case of 

massive neutrinos even less. Therefore we expect the maximum possible 

change in Ni due to particle decay to be no more than ANi/Ni = 10m3 if 

double photon scattering dominates thermalisation. This justifies our 

neglect of this regime in deriving constraints on the particle 

lifetimes, but it is interesting to note that one might be able to 

change a fraction 10m3 or 10 -4 of helium 4 into lighter elements; this 

would be in the right range for present day abundances of helium 3 and 

deuterium. This point is discussed in greater detail by Audouze, et al. 

(1984). 

The same argument can be used to show that eiectrofission reactions 

(i.e. destructions of nuclei through the impact of electrons or 
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positrons) are also negligible. The cross-sections for such reactions 

are similar in magnitude to the corresponding photoreaction 

cross-sections, because an electron passing by a nucleus can be regarded 

as producing a field of virtual photons which interact with the nucleus 

(Bishop 1964). Electrofission reactions occur in competition with 

inverse Compton scattering of energetic electrons by thermal photons, 

and therefore the destruction rate by electrons is of similar magnitude 

to the destruction rate by photons when double photon scattering is 

important. By the reasoning of the previous paragraph, we can neglect 

the destructive effect of electrons. 

IV. LIFETIME LIMITS 

Consider a particle X with primordial abundance XC relative to 

thermal electron density, with mass mX and lifetime 1. There are two 

decay paths which we can discuss using the quantities calculated above. 

The simpler possibility is X+e+e-Y. where Y is a particle which we 

assume to be non-interacting cosmologically. In this case we can use 

directly the destruction rates xi and write the change in abundance of 

element i as 

t2 
ANi’Ni = -2x, I,. Xi(“,T)e-t’T dt/T (14) 

1 

where the factor 2 is because there are two electrons per X decay, and 

we assume that the decay electrons all have the same energy, E = mX/j. 

An alternatiVe decay is X+YY; at early times (before t,, when the photon 

energy is greater than the double photon threshold), an 



16 

electron-positron pair is produced, and photodestruction proceeds 

according to equation (14). After t,, thermalisation changes, the decay 

photon either Compton scattering OP pair-producing. If the latter 

dominates (which is the case for photon energies greater than about 

120&V), then equation (14) is exactly right, but if the photon Compton 

SCZttterS then We should Calculate Zi differently. However, because we 

are dealing with an exponentially decaying sowce of photons or 

electrons, it makes essentially no difference what happens at late 

times; one could truncate the integral in equation (14) at t, instead of 

t2 and get the same answer. iJe will use equation (14) regardless of 

whether decay occurs to electrons or to photons. The only difference is 

that in the first case, we shall take the electron energy to be mX,j, 

while in the second case it will be mX/4. This is significant if the 

abundance of X depends on its mass. It should be noted that this 

analysis is applicable only up to recombination, after which the 

Universe is essentially transparent to photons. In calculating the 

integral of equation (14), we put t2 equal to lo’* s if it is calculated 

to be greater than that. This really makes no difference, however. 

To get an estimate for the critical lifetime, we demand that the 

right hand side of equation (14) should be one; in other words, we take 

the maximum allowed lifetime to be that which gives one e-fold in 

element abundance. We can now calculate permitted lifetines for massive 

neutrinos and for gravitinos. 
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a) Massive Neutrinos 

Assuming standard creak interactions, Dicus, et al. (1978) 

calculated the freeze-out temperature of massive neutrinos, and hence 

their abundance relative to photons. For masses greater than a few MeV 

(which we need to caiise photodestruction) we obtain from their results 

x 
0 = 5 x lo5 (mv/100Mev)-2~75n-1 (15) 

The electron to photon ratio enters into this abundance ratio as the 

parameter 0, defined by r~e/“.~ = 511 x 10 -10 . For a standard cosmo:og;ji, n 

has a value close to one (Yang et al. 1984). The more likely decay is 

to give e+e- directly once the neutrino is more massive than a few MeV, 

and figure 3 shows the maximum allowed lifetime, according to equation 

(t4), for this decay, and for Q = 1 or 10. A limit is obtained by 

considering destruction of each of helium 4, helium 3 and deuterium, but 

clearly the last gives the strongest limit. Also shown in fig. 3 is the 

n=l limit from deuterium, assuming a decay giving photons rather than 

pairs, SO that m ” = 14~. This curve is barely distinguishable from the 

pair decay limit. 

The dependence of the maximum lifetime on neutrino mass turns out 

to come mostly from the Variation of x0 with mv, not from the variation 

of zi with electron energy. A simple argument illustrates this. If we 

take the integral of equation (14) and integrate twice by parts we 

obtain (note that Zi(ti) = ri(t,) = 0) 



1 3 -t/r 
tie xi(dt/r) 

= ke-t"(dZi/dt),;' + .I j,,e t2 +'(d2E./dt2)dt (16) 

From fig. 2, we see that Xi rises rather abruptly from zero at ti, so 

let us assume that the largest contribution to the above comes from the 

integrated part, evaluated at ti (the endpoint contribution is 

exponentially suppressed). Further, if Zi is roughly independent of 

electron energy, then we expect the shape of the lifetime curves of 

fig. 3 to be given roughly by 

1" T/ti - till = Const + ln x,(m,,n) (17) 

In fig. 3, such a curve has been fitted to the deuterium limit at the 

point n=l and mv = lOOMeV, and gives a reasonable apprOximati0" to the 

exact results. The fit is worse at lower abundances (higher lifetimes) 

because the approximation of the integral by the first term integrated 

by parts is worse as the lifetime increases. However, the calculation 

of the destruction efficiencies Zi using only the primary scattered 

photon spectrum is itself unreliable for higher energies. The results 

of this section are trustworthy up to electron energies of perhaps 

lOOMe'!, but doubtful above that. When the lifetime limits of fig. 3 

begin to rise sharply, the calculation is very sensitive to small 

errors. In the next subsection we give an approximate method of dealing 

with very high energy particles. 
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Supersymmetric theories introduce a variety of new particles. TWO 

which may be of cosmological importance are the fermionic partners of 

the photon and graviton, the photino and gravitino. (For a review of 

some aspects of cosmology with supersymmetry, see Olive 1983). The mass 

of these particles depends on the particular supersymmetric theory being 

offered, but in general is expected to be of order 100&V. I” standard 

supersymmetry, one of these two particles is lighter than the other and 

absolutely stable; if the gravitino is heavier, it can decay into a 

photon and a photino. There are more exotic schemes, such as the 

proposal of Kim et al (1984) to incorporate Peccei-Quinn symmetry 

breaking into supersymmetry. This has the axino (the partner of the 

axion) as the lightest stable superpartner, and there is a decay in 

which the photino turns into a photon and an axino. In addition, 

photino and gravitino masses are strongly model dependent, and in 

specific theories, may be in the MeV or CeV range (Dawson et al. 1983). 

iiather than get involved in the intricacies of supercosmology, xe shall 

call a gravitino any particle which decays into a photon and a 

cosmologically uninteresting (from our point of view) particle. The 

major distinction between gravitinos and massive neutrinos is that they 

decouple much earlier, while still relativistic, and are consequently 

about as abundant as photons, regardless of mass. This immediately 

introduces a problem, since one cannot have a Universe containing 

particles of 1OOGeV with the same abundance as photons at times of 

around one second without running into difficulties with the total mass 
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density. This gravitino problem may be solved by inflation (Nanopoulos, 

et al. 1984). which can put the gravitino abundance at essentially 

zero. iiowever , reheating after the inflationary phase may produce 

gravitinos again. The upshot of all this is that SupercosmOlogy can 

provide new unstable particles of almost arbitrary abundance and mass. 

We will therefore give Some general consideration of the limits that 

photodestruction can place on such a population. 

For gravitinos of a particular mass and abundance, there iS a 

maximum lifetime given by requiring that they should not dominate the 

mass density of the Universe. Using the temperature-time relation 

above, and taking the sum of photon and neutrino densities for the total 

cosmic density, one easily finds 

T < 2.1 x 10-3s/(n-/" 
g y 

. m~/lO0MeV)~ (18) 

If gravitinos come to dominate the Universe, and decay later, they will 

upset the standard relations between nucleosynthesis and baryon to 

photon ratio, so the above lifetime can be taken as an upper limit. (It 

may be possible to construct a non-standard cosmology in which 

gravitinos temporarily dominate the Universe, but we will not consider 

this here.) We want now to consider the photodestructive effects of 

decays to see if a stronger limit can be obtained. This could be done 

by using equation (14), putting in a mass and abundance, and finding 

numerically the maximum lifetime. However, this would be both time 

consuming and, at electron energies of more than a few hundred MeV, 

inaccurate because of the approximations made in deriving the Xi. 
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Instead, we shall try to give an approximate analytic expression for 

maximum lifetime In terms of particle mass and abundance. The 

destruction efficiencies Ii, for electron energies not far above the 

photonuclear thresholds, vary in a way which is determined by the 

complicated form of the inverse Compton photon spectrum and the various 

photoreaction cross-sections. However, for higher energies, one might 

expect an approximate scaling behaviour of the Ii with energy. For 

photon energies greater than a hundred MeV or so, pair-production is 

always the dominant scattering process, whether off thermal photons or 

baryons; in addition, for electron energies somewhat higher than this, 

more than a few CeV, inverse Compton scattering is in the regime where 

the maximum photon energy is equal to the electron energy. Under these 

conditions it is possible to show that the spectrum of scattered 

photons, including mutiple scattering, should be of constant shape, and 

scale in magnitude proportionately to the energy of the initial particle 

(Lindley 1080, Appendix). Because all the photoreaction cross-sections 

peak at some tens of MeV, and fall off as power-laws beyond that, the 

exlStt?nCe of a cut-off in the scattered photon spectrum at some high 

energy is unimportant in determining the destruction rates Zi. For 

initial decay particles, either photons or electrons, of sufficiently 

high energy, we therefore expect approximate behaviour 

z(e,T) = e/e0 Z (eo,T) (19) 

since the low energy part of the scattered photon spectrum is of 

constant shape. This scaling in Xi, when applied to the integral of 
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equation (14), can be treated in the same way as the scaling with x0; a 

tenfold increase in particle mass is equivalent to a tenfold increase in 

abundance. We can therefore approximate the lifetime limit for very 

massive particles (greater than about 1GeV) as the solution of 

2x t2 -t/T 
0 - e/so j,, E (co,T)e dt/r = 1 (20) 

1 

It should be noted that this scaling does not apply very well to the 

calculated Ii above, partly for the reasons given, that the variation of 

the photon spectrum and the photonuclear cross-section is more 

complicated at lower energies, and partly because the approximation of 

using Only the once-scattered inverse Compton photons to find Zi is 

worse at higher energies. In fact, the calculated values of the Zi tend 

to decrease roughly in proportion to the electron energy, because the 

spectrum (6) goes inversely with the maximum scattered photon energy, 

and near tD, wm is approximately equal to initial electron energy. Use 

of equation (4.7) means that the maximum lifetime can be Found in terms 

of a single parameter, the product of mass and abundance; the only other 

variation comes from choosing different electron energies from which to 

do the scaling. This new parameter is of course nothing more than the 

mass density of gravitinos, appropriately normalised; it equivalently 

measures the energy density of decay electrons. Figure 4 illustrates 

the lifetime limit in terms of this parameter, with the scaling point 

chosen to be 1OOMeV in the hope that this is high enough for the scaling 

to be reasonably good, but low enough for the numerical calculation of 

xi to be reasonably accurate. We define the lifetime limit as a 
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0100 = x,~~/100MeV) 
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(21) 

which can be thought of as the equivalent density of 1OOMeV decay 

particles. The ‘error bars’ in fig. 4 are intended to convey the 

difference in maximum lifetime obtained using different scaling points. 

They were obtained by scaling from 50MeV and 200MeV. The straight line 

on fig. 4 illUSti-ateS the 1ifetiKe limit (la), USing mgS3e, which 

requires that gravitinos should never dominate the density of the 

Universe. Except for particles whicn are near the bottom right-hand 

corner of the figure, the photodestruction limit is stronger than the 

simpie mass density limit. (The exact position of the density limit 

line depends on the baryon to photon ratio, since the number density of 

gravltinos is taken relative to the thermal electron density; we chose 

n = 1 for this line.) Also shown on this diagram is the lifetime limit 

of the previous section on massive neutrinos, for the n = 1, m v = 3E 

case, translated into the new parameter. For low neutrinos masses 

(short lifetimes), the directly calculated limit is presumably better 

than the scaling law limit, while for high neutrino masses (long 

lifetimes), the direct CSlCUlatiOn Of Ei is inaccurate, and the scaling 

law gives the better limit. A point to mention is that the form of the 

scaling law can be justified better than the rather arbitrary 

normalisation to 1OOMeV electrons that was chosen. To get a more 

reliable line on fig. 4, one could in principle do a complete numerical 

calculation, including all multiply scattered photons and electrons, 
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which would allow the proportionality of the Zi with energy to be fixed 

absolutely in magnitude. However, doing such a calculation involves 

either solving a pair of coupled integro-differential equations for the 

energy distribution of scattered photons and electrons, or else 

performing a Monte Carlo simulation of all the scattering processes. 

Even so, only energies of order some hundreds of MeV could be reliably 

analysed because of the increasing number of scattering processes which 

open up at higher energies. Such a calculation has not been attempted. 

An appropriate conclusion to this section is the rule-of-thumb that for 

decay particles of less than about lOOMeV, the numerical calculations of 

the previcus sections should be employed, while for higher energies, 

fig. 4 is useful, with the caveat that the normalisation is somewhat 

uncertain. 

(c) Scaling to Different Cosmologies 

It was mentioned in section II that the lifetime limits can be 

adapted to a cosmological model in which the temperature-time relation 

has T*t equal to an arbitrary constant. The only place that time enters 

explicitly into the calculation is in the integral (14). All other 

times, such as tD, are derived from temperatures. In this integral, any 

scaling of cosmic time t can be accompanied by the same scaling in 

lifetime T to leave the expression unchanged in value. The adopted 

relation (3) implies that a temperature of O.lMeV occurs at a time of 

100s. In standard cosmology, with a density during the radiation era 

made up of photons and three species of massless neutrinos, the correct 

temperature-time relation has O.lMeV occur at 132s (Weinberg 1972). in 
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this case, one should therefore increase the ‘upper limits on lifetime in 

all the above by 32%. However, in a cosmology with a variety of 

supersymmetric relic particles, the expansion rate will be faster than 

standard; by calculating the temperature-time relation in one’s 

favourite cosmology, the lifetime limits of this paper can be scaled 

appropriately. 

v. CONCLUSIONS 

The calculations in this paper are an improvement on the estimates 

given earlier (Lindley 19791, and somewhat more general, but contain a 

number of faults. The two major sources of inaccuracy are the neglect 

of multiple scatterings (we used only the primary inverse Compton 

spectrum), and the rather brusque treatment of the double photon 

pair-production threshold. In principle, better estimates could be made 

in both these areas, but it would demand some tedious calculation. 

However, for a considerable range in particle mass and abundance, (the 

flatter part of the curve in fig. II), the values of the maximum lifetime 

that we obtained are only moderately sensitive to the values of the 

destruction coefficients Ii, because of the exponential dependence on 

the lifetime of the number of decay particles causing photofission. 

Uncertainties are much more significant on the steeper part of fig. 4, 

because as the abundance of decaying particles falls there is a rather 

rapid transition from considerable photodestruction to none. The 

numerically calculated results given above should be quite accurate, 

especially for electron energies not much greater then about 100MeV. 

The approximate results embodied in figure 4 allow lifetime limits to be 



26 

estimated for particles with higher masses than the direct calculations 

can accommodate. This also allows limits to be deduced for other 

massive decaying particles, such as the generic ‘gravitino’ discussed in 

section IV. 

The lifetime limits obtained above are of order some thousands of 

seconds or more. This is in many cases stricter than other upper 

limits; the next most severe constraint probably comes from 

consideration of the distortion of the microwave background by high 

energy photons and electrons (Silk and Stebbins 1984; Dicus, et al. 

1978). The latter is a hard thing to calculate, but one usually gets 

maximum lifetimes of order 104 to 105s, depending on the photon to 

baryon ratio and the present division of cosmological density into 

baryons, photons and possible missing mass candidates. We therefore 

give the main conclusion that photodestruction of light elements gives, 

for particles of sufficient mass, the strongest limit on lifetime. 

Finally, we refer again to Audouze, et al. (1984), who discuss the 

possible creation of interesting quantities of deuterium and helium 3 by 

the photodestruction of small amounts of helium 4. This does not affect 

the lifetime limits of this paper; what one finds is that for particle 

lifetimes a little less than the permitted maximum for helium 4 

destruction, creation of the lighter elements can indeed occur. Once 

the maximum is reached, however, all elements are destroyed to an 

unacceptable degree. 

I am grateful to Joe Silk for reviving my interest in this problem, 

for several interesting discussions, and for hospitality at the 

Department of Astronomy at Berkeley, where most of the computation was 

performed. This work was supported by NASA and the DOE at Fermilab. 
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TABLE I 

Fieaction Threshold (HeV) Reference 

'tie(Y,pj3H 19.8 

qkie(Y,n)3He 20.6 

4He(Y,p")2H 26.1 

4 Ye(Y,2p)2" 28.3 

33e(Y,p)2Y 5.5 

3He (~,n)2p 7.7 

2Yi(Y,n)p 2.225 

Arkatov et al. 1971 

Arkatov et al. 1976 

Ferrer0 et al. 1966 

Arkatov et al. 1976 

1, 

Gorbunov & Varfolomeev 1964 

I, 

Berman et al. 1974 

Evans 1955 

Partovi 1964 
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FIGURE CAPTIONS 

Figure 1: - Threshold energies as a function of temperature. Above 

the straight solid line, photon-photon scattering dominates and no 

photodestruction occurs. The curved lines are the maximum photon 

energy from inverse Compton scattering of an electron of the energy 

indicated on each curve, The horizontal broken lines are the 

photo-nuclear thresholds for (from top to bottom) 4He, 3He, and D. 

The three broken curved lines show the minimum electron energy 

necessary to cause any photodestruction of the three nuclei. 

Figure 2: The solid lines are the destruction efficiencies as a 

function of temperature (defined in the text) of 100 MeV electrons 

for 4He, 3He, and D, as marked. The broken lines are the branching 

functions for splitting 4He into 3He, or D, and for 3He into D. 

(Photodestruction of 4He also yields 3H, but this decays into 3He 

and is included in f43.) 

Figure 3: Lifetime limits for massive neutrinos. The curves show - 

the maximum lifetime against destruction of 4He, 3He, and D as a 

function of neutrino mass, with electron energy taken to be 

one-third of the mass. The upper solid line for D has fewer 

neutrinos per thermal electron (q=lO instead of n=l), and the 

broken line has electron energy one-quarter of the neutrino mass. 

The crosses show an analytic fit to the curves. 

Figure 4: Estimated maximum lifetime for particles of arbitrary 

mass and abundance, as a function of the parameter ploo = 

(nx/n,)(E/lOOMeV), and with electron energy one-third of the 

particle mass. The straight line is the limit from requiring that 

the universe is never dominated by these particles. The broken line 



31 

is the n=l limit from deuterium, of the previous figure, translated 

into the parameter P,~,,. 
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